

BiHiKu

HIGH POWER BIFACIAL MONO PERC MODULE

435 W ~ 460 W

UP TO 30% MORE POWER FROM THE BACK SIDE

CS3W-435 | 440 | 445 | 450 | 455 | 460MB-AG

MORE POWER

Up to 30% more power from the back side

24 % higher front side power than conventional modules

Low NMOT: 41 ± 3 °C Low temperature coefficient (Pmax): -0.34 % / °C

Better shading tolerance

MORE RELIABLE

Lower internal current, lower hot spot temperature

Minimizes micro-crack impacts

Heavy snow load up to 5400 Pa, wind load up to 3600 Pa *

FRONT BACK

Enhanced Product Warranty on Materials and Workmanship*

Linear Power Performance Warranty*

1st year power degradation no more than 2% Subsequent annual power degradation no more than 0.45%

*According to the applicable Canadian Solar Limited Warranty Statement.

MANAGEMENT SYSTEM CERTIFICATES*

ISO 9001:2015 / Quality management system
ISO 14001:2015 / Standards for environmental management system
ISO 45001: 2018 / International standards for occupational health & safety

PRODUCT CERTIFICATES*

IEC 61215 / IEC 61730 / CE / MCS / INMETRO / UKCA FSEC (US Florida) / UL 61730 / IEC 61701 / IEC 62716 / IEC 60068-2-68 Take-e-way

^{*} The specific certificates applicable to different module types and markets will vary, and therefore not all of the certifications listed herein will simultaneously apply to the products you order or use. Please contact your local Canadian Solar sales representative to confirm the specific certificates available for your product and applicable in the regions in which the products will be used.

CSI Solar Co., Ltd. is committed to providing high quality solar products, solar system solutions and services to customers around the world. Canadian Solar was recognized as the No. 1 module supplier for quality and performance/price ratio in the IHS Module Customer Insight Survey, and is a leading PV project developer and manufacturer of solar modules, with over 55 GW deployed around the world since 2001.

^{*} For detailed information, please refer to Installation Manual.

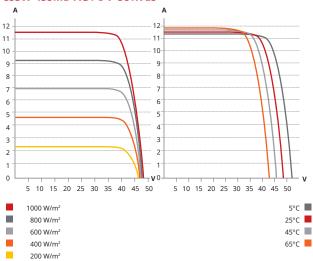
ENGINEERING DRAWING (mm)

Frame Cross Section Rear View A-A **Mounting Hole**

ELECTRICAL DATA | STC*

		Nominal	Opt.	Opt.	Open	Short	
		Max.	Operating	Operating	Circuit	Circuit	Module
		Power (Pmax)	Voltage (Vmp)	Current (Imp)	Voltage (Voc)	(Isc)	Efficiency
CS3W-435MI	R-AG		40.5 V	10.75 A	48.5 V	11.42 A	19.5%
C3344-4331411	5%	457 W	40.5 V	11.29 A	48.5 V	11.99 A	20.5%
Bifacial	10%		40.5 V	11.83 A	48.5 V	12.56 A	21.4%
Diraciai	20%		40.5 V	12.90 A	48.5 V	13.70 A	23.4%
	30%		40.5 V	13.98 A	48.5 V	14.85 A	25.3%
CS3W-440MI			40.7 V	10.82 A	48.7 V	11.48 A	19.7%
C5511 4-101111	5%	462 W	40.7 V	11.36 A	48.7 V	12.05 A	20.7%
Bifacial	10%		40.7 V	11.90 A	48.7 V	12.63 A	21.7%
Diracial	20%		40.7 V	12.98 A	48.7 V	13.78 A	23.6%
	30%		40.7 V	14.07 A	48.7 V	14.92 A	25.6%
CS3W-445MI			40.9 V	10.89 A	48.9 V	11.54 A	19.9%
	5%	467 W	40.9 V	11.43 A	48.9 V	12.12 A	20.9%
Bifacial	10%		40.9 V	11.98 A	48.9 V	12.69 A	21.9%
	20%	534 W	40.9 V	13.07 A	48.9 V	13.85 A	23.9%
	30%		40.9 V	14.16 A	48.9 V	15.00 A	25.9%
CS3W-450MI	B-AG		41.1 V	10.96 A	49.1 V	11.60 A	20.1%
	5%	473 W	41.1 V	11.51 A	49.1 V	12.18 A	21.2%
Bifacial	10%	495 W	41.1 V	12.06 A	49.1 V	12.76 A	22.2%
	20%	540 W	41.1 V	13.15 A	49.1 V	13.92 A	24.2%
	30%	585 W	41.1 V	14.25 A	49.1 V	15.08 A	26.2%
CS3W-455MI	B-AG	455 W	41.3 V	11.02 A	49.3 V	11.66 A	20.4%
	5%	478 W	41.3 V	11.57 A	49.3 V	12.24 A	21.4%
Bifacial	10%	501 W	41.3 V	12.12 A	49.3 V	12.83 A	22.4%
Gain**	20%	546 W	41.3 V	13.22 A	49.3 V	13.99 A	24.4%
	30%	592 W	41.3 V	14.33 A	49.3 V	15.16 A	26.5%
CS3W-460MI	B-AG	460 W	41.5 V	11.09 A	49.5 V	11.72 A	20.6%
	5%	483 W	41.5 V	11.64 A	49.5 V	12.31 A	21.6%
	10%	506 W	41.5 V	12.20 A	49.5 V	12.89 A	22.7%
Gain**	20%	552 W	41.5 V	13.31 A	49.5 V	14.06 A	24.7%

- * Under Standard Test Conditions (STC) of irradiance of 1000 W/m², spectrum AM 1.5 and cell temperature of 25°C.
- ** Bifacial Gain: The additional gain from the back side compared to the power of the front side at the standard test condition. It depends on mounting (structure, height, tilt angle etc.) and albedo of the ground.


ELECTRICAL DATA

Operating Temperature	-40°C ~ +85°C
Max. System Voltage	1500 V (IEC/UL) or 1000 V (IEC/UL)
Madula Fina Danfarrana	TYPE 29 (UL 61730)
Module Fire Performance	or CLASS C (IEC61730)
Max. Series Fuse Rating	25 A
Application Classification	Class A
Power Tolerance	0 ~ + 10 W
Power Bifaciality*	70 %
1	L d D L D L D L CTC DIS 1

- * Power Bifaciality = $Pmax_{rear}$ / $Pmax_{front}$ both $Pmax_{rear}$ and $Pmax_{front}$ are tested under STC, Bifaciality Tolerance: \pm 5 %
- \star The specifications and key features contained in this datasheet may deviate slightly from our actual products due to the on-going innovation and product enhancement. CSI Solar Co., Ltd. reserves the right to make necessary adjustment to the information described herein at any time without further notice.

Please be kindly advised that PV modules should be handled and installed by qualified people who have professional skills and please carefully read the safety and installation instructions before using our PV modules. :

CS3W-435MB-AG / I-V CURVES

ELECTRICAL DATA | NMOT*

N I = ! = I	0	04	0	Cl
				Short
Power (Pmax)	Voltage (Vmp)	Current (Imp)	Voltage (Voc)	
326 W	38.0 V	8.59 A	45.8 V	9.21 A
330 W	38.2 V	8.65 A	46.0 V	9.26 A
334 W	38.3 V	8.71 A	46.2 V	9.31 A
338 W	38.5 V	8.76 A	46.4 V	9.35 A
341 W	38.7 V	8.82 A	46.6 V	9.40 A
345 W	38.9 V	8.87 A	46.8 V	9.45 A
	Max. Power (Pmax) 326 W 330 W 334 W 338 W 341 W	Power (Pmax) Voltage (Vmp) 326 W 38.0 V 330 W 38.2 V 334 W 38.3 V 338 W 38.5 V 341 W 38.7 V	Max. Power (Pmax) Operating Voltage (Vmp) Current (Imp) 326 W 38.0 V 8.59 A 330 W 38.2 V 8.65 A 334 W 38.3 V 8.71 A 338 W 38.5 V 8.76 A 341 W 38.7 V 8.82 A	Max. Power (Pmax) Operating Voltage (Vmp) Current (Imp) Circuit Voltage (Voc) 326 W 38.0 V 8.59 A 45.8 V 330 W 38.2 V 8.65 A 46.0 V 334 W 38.3 V 8.71 A 46.2 V 338 W 38.5 V 8.76 A 46.4 V 341 W 38.7 V 8.82 A 46.6 V

 ^{*} Under Nominal Module Operating Temperature (NMOT), irradiance of 800 W/m² spectrum AM 1.5, ambient temperature 20°C, wind speed 1 m/s.

MECHANICAL DATA

Specification	Data
Cell Type	Mono-crystalline
Cell Arrangement	144 [2 X (12 X 6)]
Dimensions	2132 × 1048 × 30 mm (83.9 × 41.3 × 1.2 in)
Weight	28.4 kg (62.6 lbs)
Front / Back Glass	2.0 mm heat strengthened glass
Frame	Anodized aluminium alloy
J-Box	IP68, 3 diodes
Cable	4.0 mm ² (IEC), 12 AWG (UL)
Cable Length (Including Connector)	400 mm (15.7 in) (+) / 280 mm (11.0 in) (-) (supply additional cable jumper: 2 lines/pallet) or customized length*
Connector	T4 series or MC4-EVO2
Per Pallet	33 pieces
Per Container (40' HO)	660 pieces or 627 pieces (only for US)

^{*} For detailed information, please contact your local Canadian Solar sales and technical representatives.

TEMPERATURE CHARACTERISTICS

n Data
Coefficient (Pmax) -0.34 % / °C
Coefficient (Voc) -0.26 % / °C
Coefficient (Isc) 0.05 % / °C
dule Operating Temperature 41 ± 3°C
Coefficient (Isc) 0.05 % / °C

PARTNER SECTION

 	• •	• •	• •	• •	• •	• •	• •	• •	• •	٠.	۰	• •	• •	• •	 • •	 • •	• •	۰	٠.	٠.	۰	• •	• •	• •	۰	۰	• •	• •	 ۰	• •		• •	۰	۰	• •	• •	۰	• •	• •	٠	• •	 ٠.	۰	• •	•	• •	• •	 • •	 • •	 • •	• •	• •	• •	•	• •	۰.	• •	 	• •